Copyright (c) 2013 John L. Jerz

Catalysis (wikipedia)
Home
A Proposed Heuristic for a Computer Chess Program (John L. Jerz)
Problem Solving and the Gathering of Diagnostic Information (John L. Jerz)
A Concept of Strategy (John L. Jerz)
Books/Articles I am Reading
Quotes from References of Interest
Satire/ Play
Viva La Vida
Quotes on Thinking
Quotes on Planning
Quotes on Strategy
Quotes Concerning Problem Solving
Computer Chess
Chess Analysis
Early Computers/ New Computers
Problem Solving/ Creativity
Game Theory
Favorite Links
About Me
Additional Notes
The Case for Using Probabilistic Knowledge in a Computer Chess Program (John L. Jerz)
Resilience in Man and Machine

[JLJ - what structures of pieces in a game can act as a catalyst to further action?]
 
Quotes from article:
 
History
 
In a general sense, anything that increases the rate of a process is a "catalyst", a term derived from Greek καταλύειν, meaning "to annul," or "to untie," or "to pick up." The phrase catalysed processes was coined by J�ns Jakob Berzelius in 1836[14] to describe reactions that are accelerated by substances that remain unchanged after the reaction.
 
The production of most industrially important chemicals involves catalysis. Similarly, most biochemically significant processes are catalysed. Research into catalysis is a major field in applied science and involves many areas of chemistry, notably in organometallic chemistry and materials science. Catalysis is relevant to many aspects of environmental science, e.g. the catalytic converter in automobiles and the dynamics of the ozone hole. Catalytic reactions are preferred in environmentally friendly green chemistry due to the reduced amount of waste generated,[3] as opposed to stoichiometric reactions in which all reactants are consumed and more side products are formed. The most common catalyst is the proton (H+). Many transition metals and transition metal complexes are used in catalysis as well. Catalysts called enzymes are important in biology.
A catalyst works by providing an alternative reaction pathway to the reaction product. The rate of the reaction is increased as this alternative route has a lower activation energy than the reaction route not mediated by the catalyst. The disproportionation of hydrogen peroxide to give water and oxygen is a reaction that is strongly affected by catalysts:
    2 H2O2 -> 2 H2O + O2
This reaction is favoured in the sense that reaction products are more stable than the starting material, however the uncatalysed reaction is slow. The decomposition of hydrogen peroxide is in fact so slow that hydrogen peroxide solutions are commercially available. Upon the addition of a small amount of manganese dioxide, the hydrogen peroxide rapidly reacts according to the above equation. This effect is readily seen by the effervescence of oxygen.[4] The manganese dioxide may be recovered unchanged, and re-used indefinitely, and thus is not consumed in the reaction. Accordingly, manganese dioxide catalyses this reaction.[5]

Enter supporting content here