Copyright (c) 2013 John L. Jerz

Assessing Viability and Sustainability (Bossel, 2001, 2003)

Home
A Proposed Heuristic for a Computer Chess Program (John L. Jerz)
Problem Solving and the Gathering of Diagnostic Information (John L. Jerz)
A Concept of Strategy (John L. Jerz)
Books/Articles I am Reading
Quotes from References of Interest
Satire/ Play
Viva La Vida
Quotes on Thinking
Quotes on Planning
Quotes on Strategy
Quotes Concerning Problem Solving
Computer Chess
Chess Analysis
Early Computers/ New Computers
Problem Solving/ Creativity
Game Theory
Favorite Links
About Me
Additional Notes
The Case for Using Probabilistic Knowledge in a Computer Chess Program (John L. Jerz)
Resilience in Man and Machine

a Systems-based Approach for Deriving Comprehensive Indicator Sets
 
In: Integrated Natural Resource Management: Linking Productivity, the Environment and Development, Edited by Campbell and Sayer, 2003

Yet another paper by Bossel describing his indicator set.
 
Abstract
Performance assessment in holistic approaches such as integrated natural resource management has to deal with a complete set of interacting and self-organizing natural and human systems and agents, all pursuing their own "interests" while also contributing to the development of the total system. Performance indicators must therefore reflect the viability of essential component systems and the total system under study. A systems-based derivation of a comprehensive set of performance indicators first requires the identification of essential component systems, their mutual (often hierarchical or reciprocal) relationships, and their contributions to the performance of other component systems and the total system. The second step consists of identifying the indicators that represent the viability states of the component systems and the contributions of these component systems to the performance of the total system. The search for performance indicators is guided by the realization that essential interests (orientations or orientors) of systems and actors are shaped by both their characteristic functions and the fundamental and general properties of their system environments (e.g., normal environmental state, scarcity of resources, variety, variability, change, other coexisting systems). To be viable, a system must devote an essential minimum amount of attention to satisfying the "basic orientors" that respond to the properties of its environment. This fact can be used to define comprehensive and system-specific sets of performance indicators that reflect all important concerns. Often, qualitative indicators and the study of qualitative systems are sufficient for reliable performance assessments. However, this approach can also be formalized for qualitative computer-assisted assessment. Examples are presented of indicator sets for the sustainable development of regions, including the computer-based, time-dependent assessment of system performance using time-series data. Because of its systems-theoretical foundation, this approach avoids the problems of incompleteness and double-counting common in ad hoc methods of indicator selection.

p.248 Competent management of real-world problems must recognize and account for real-world system complexity. Holistic approaches such as integrated natural resource management (INRM) and system dynamics are therefore spreading in a wide range of disciplines... A crucial aspect of this development is the search for appropriate indicators of system performance to condense vital information into a compact set of reliable signals for management. The need for comprehensive indicator sets that assess system viability, performance, and sustainability is especially urgent in management for sustainable development at all levels
 
p.248 There seems to be a general agreement that it is impossible to define only a single indicator of sustainable development, and that a substantial number of indicators are necessary to capture all the important aspects of sustainable development in a particular application... However, defining an appropriate set of indicators for sustainable development is a difficult task. If too few indicators are monitored, crucially important developments may escape attention. If a large number of indicators have to be examined, data acquisition and data analysis may become prohibitively expensive and time-consuming... It is therefore essential to define a set of representative indicators that provide a comprehensive description, or as many as are essential, but no more. But what are the "essential" indicators? ... This paper describes a different system-based approach based on new developments in ecological and general systems theory (Muller and Leupelt 1998). Development is seen as a coevolutionary process involving interacting systems in a common environment in which each system follows its own path of self-organization in response to the challenges of its particular environmental circumstances.
 
p.252 The key to understanding viability and performance therefore lies in understanding the challenges of a particular environment.
 
p.253 The normal environmental state in which humankind must develop is characterized by laws of nature and logic that cannot be broken and that limit the spectrum of possible physical, technical, and biological processes.
 
p.254 A system can be viable and sustainable only if the constraints imposed by the fundamental environmental properties are respected. This requirement imposes certain orientations or interests on systems in the course of their self-organizing or coevolutionary development. Systems fail when they do not respect the constraints of their environments. This is true for species shaped by thousands of generations of evolution as well as for the technologies or organizations developed by humans. The terms "orientation" and "interest" as used here do not imply any consciousness on the part of the system. A system is said to have an interest or orientation if it can be observed to express a preference (e.g., a plant growing toward light).
 
p.256 Because it is better adapted to its environment, the system that most effectively satisfies all its basic orientors will have better fitness and better performance (Krebs and Bossel 1997). Assessment of orientor satisfaction therefore provides a measure of system viability and performance in a given environment. This can be done by identifying the indicators that provide information about how well each of the orientors is being fulfilled at a given time. In this context, the basic orientors can serve as a checklist for asking a set of questions whose answers provide an assessment of viability and system performance.
 
p.256 To assess sustainability, we have to find indicators for each essential system within the total system in each orientor category that can answer two sets of questions. First, how viable is each system, i.e., how satisfied is each basic orientor of that system? Second, how does a given system contribute to the viability (the basic orientors) of another system or the total system?
 
p.261 To stay viable, a system must be able to respond or adapt to threats before they do serious damage. This suggests that it is advisable to concentrate on indicators that relate the rates of viability threats (threats to a system's basic orientors) to the rates of evasive response, or their respective inverse, the respite time to the response time (Biesiot 1997, Bossel 1999). These two quantitative measures will often be available from system observations. They can be combined in a nondimensional indicator by taking the ratio of the rate of system response to the rate of system or environmental change caused by a particular threat. If the measure is greater than one, the system is viable (with respect to that particular orientor); if it is less than one, the system's viability is threatened. Viability means that the system can cope with challenges and will not be overwhelmed by them, i.e., that its responses can outpace the threats to it.
 
p.264 The systematic and theory-based nature of the orientor method of determining indicators is important. We are not simply asking people to find and agree on a set of indicators; we are asking them to find answers (indicators) to very specific questions concerning all the vital aspects of viability and system performance, i.e., the basic orientors. In this structured approach based on systems theory and empirical evidence, we can be reasonably confident of obtaining a comprehensive set of indicators that cover all important aspects of systems viability and performance.

Enter supporting content here